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Structure and dynamics of topological defects in a glassy liquid on a negatively curved manifold
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We study the low-temperature regime of an atomic liquid on the hyperbolic plane by means of molecular
dynamics simulation and we compare the results to a continuum theory of defects in a negatively curved
hexagonal background. In agreement with the theory and previous results on positively curved (spherical)
surfaces, we find that the atomic configurations consist of isolated defect structures, dubbed “grain boundary
scars,” that form around an irreducible density of curvature-induced disclinations in an otherwise hexagonal
background. We investigate the structure and the dynamics of these grain boundary scars.
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I. INTRODUCTION

More than a century after Thompson’s considerations
about the organization of repulsive charged particles in
spherical shells [1], the problem of ordering and minimum-
energy configurations of particles on curved surfaces has at-
tracted renewed interest [2-5]. A theory has recently been
proposed which derives ground-state particle configurations
on two-dimensional (2D) curved manifolds from the effec-
tive free-energy of relevant interacting topological defects,
disclinations and dislocations [3,6-9]. It has been mainly ap-
plied to “spherical crystals,” i.e., defected triangular tilings
on the surface of a sphere, for which it predicts the appear-
ance of stable “grain boundary scars” formed by strings of
dislocations emanating from an irreducible curvature-
induced disclination and terminating in the crystal. Such de-
fect structures are energetically forbidden in flat (Euclidean)
space and result from the nonzero curvature of space. This
prediction, as well as more specific ones concerning either
the structure or the dynamics of the defects, have been con-
firmed in both simulations [5] and experiments [10-12] on
spherical crystals.

The purpose of the present work is to test the theoretical
predictions on 2D manifolds of constant negative curvature.
Negative curvature brings in new features compared to the
more familiar positive curvature of spherical geometry. First,
a homogeneous space of constant negative curvature can be
of infinite extent: in 2D, this is the hyperbolic plane H>. As a
result, a thermodynamic limit and bona fide phase transitions
may be envisaged, contrary to what occurs on a sphere. Sec-
ond, the hyperbolic plane as a whole cannot be embedded in
3D Euclidean space so that physical realizations of nega-
tively curved manifolds in soft and hard condensed matter do
not have constant curvature. They can be negatively curved
locally, in the form of a saddle point, or in a more extended
way, as on the inner wall of a torus [5]. They can also be of
arbitrary spatial extent with a negative Gaussian curvature
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only on average, such as the “minimal surfaces” found for
example in bicontinuous phases of amphiphilic bilayers [13].

Here, we consider an equilibrium system of atoms inter-
acting with a circularly symmetric pair potential on the hy-
perbolic plane, which we investigate through molecular dy-
namics simulation. This model has been introduced and
already studied in the frustration-based approach of glasses
[4,14,15], of supercooled liquids and the glass transition
[16-18], and of jamming [19,20]. In the present context of
low-energy configurations of particles and associated topo-
logical defects, we focus on the model at low temperature, in
a regime where the spatial extension of the local hexagonal/
hexatic order characteristic of the liquid has saturated due to
the frustrating effect of space curvature [18]. We find that the
atomic configurations consist of rare defect structures in an
otherwise sixfold coordinated background. At the tempera-
tures at which equilibration is still possible on the simulation
time scale, the system is disordered at long length scales and
appears as a very slowly relaxing “glassy” liquid. Interest-
ingly, the defect structures are organized much like what has
been found in spherical geometry and predicted by the con-
tinuum theory of defects [3,6-9]. They form grain boundary
scars emanating from an irreducible number of disclinations
forced in the medium by the topology of the embedding
manifold. By changing the magnitude of the curvature, we
also confirm, at least in a semiquantitative way, several pre-
dictions of the theory.

The rest of the article is organized as follows. In Sec. II,
we introduce the atomistic model and we shortly describe
basic notions and specific features coming with the hyper-
bolic geometry as well as the way we handle them in the
computer simulations. In Sec. III, we review the continuum
theory of defects and apply it to negatively curved 2D mani-
folds. Section IV is devoted to the simulation results and
their comparison with theoretical predictions. Finally, we
give some concluding remarks in Sec. V.

II. MODEL, SIMULATION, AND BASIC NOTIONS

We consider a one-component atomic liquid embedded
in the hyperbolic plane H>. The latter is a homogeneous
surface of constant negative curvature K =—x2, the associated
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hyperbolic ~ metric  being obtained from ds*=dr?
+ k7% sinh?(kr)d¢* with (r,¢) the appropriate polar coordi-
nates [21,22]. The atoms interact through the Lennard-Jones

potential
o\12 [ o\6
o= (5)° (2] "

where r is the geodesic distance between atom centers. We
have investigated this model by means of molecular dynam-
ics simulation. The simulations have been performed at fixed
density p02:0.85 in the microcanonical ensemble, and sev-
eral curvature magnitudes, parametrized by o, have been
considered. We have restricted our study to “small” curva-
tures (ko=0.2) for which the local arrangement of the at-
oms is the same as in flat (Euclidean) space, i.e., hexagonal.
Due to the curvature-induced frustration, hexagonal tiling of
the whole plane is however forbidden and an irreducible den-
sity of defects must be present. For larger curvatures (ko
= 1), local heptagonal, octagonal, etc., atomic arrangements
become preferred in the liquid and, for specific ranges of
values, this may lead to unfrustrated (quasi)long-range order-
ing in regular lattices with coordination numbers z=7 at low
temperature [15].

Hyperbolic geometry requires extending the usual meth-
ods and algorithms used in Euclidean space in order to ac-
count for boundary effects (which are never negligible com-
pared to bulk contributions), parallel transport of vectors
(which is not globally defined on curved manifolds), and
visualization (since H> cannot be embedded in 3D Euclidean
space). Details on the procedures are given elsewhere
[17,18]. We just mention here that, to study bulk behavior,
we have implemented periodic boundary conditions [23].
Quite generally, periodic boundary conditions can be envis-
aged from both a “geometrical” and a “topological” perspec-
tive. From a geometrical point of view, a periodic boundary
condition amounts to replicating a primitive cell containing
the system of interest in order to generate a tiling of the
whole space. From a topological one, a periodic boundary
condition implies providing a rule to pair the edges of the
primitive cell, which leads, after identification of the paired
edges, to a “quotient space” that can be represented as a
multiconnected compact manifold. The primitive cell to-
gether with the edge pairing rule define a “fundamental poly-
gon” [23]. On the hyperbolic plane, there is an infinite num-
ber of possibilities. A given fundamental polygon is then
characterized by an area, or equivalently by the genus of the
associated compact manifold [see below Eq. (4)], a number
of sides, which for regular polygons and for a given genus
fixes the associated tiling, and a pairing of its sides. In the
present study, we have used two different boundary condi-
tions. The first one corresponds to an octagonal primitive cell
whose quotient space can be topologically described as a
compact manifold of genus g=2 (a “two-hole torus”); the
associated tiling of the hyperbolic plane H” is denoted by
{8,8}, meaning that eight octagons meet at each vertex (more
generally, the Schlifli notation {p,q} denotes a tiling in
which g regular polygons with p edges meet at each vertex).
The other periodic boundary condition is based on a polygo-
nal cell with 14 edges and a quotient space with genus
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¢=3 (“a three-hole torus”); the associated tiling of H” is a
{14,7} one. Choosing these two different conditions allows us
to check that the observed behavior of the liquid does corre-
spond to bulk behavior with negligible finite-size effect: the
area of the 14-gon is indeed twice bigger than the area of the
octagon whereas, as will be shown below, the measured
quantities are essentially identical in both cases.

Visualization, on the other hand, is obtained through the
Poincaré disk model [21,22]. This is a projection of the
whole hyperbolic plane H? onto a unit disk. The projection is
conformal (angles are preserved) but not isometric (distances
are deformed and shrink as one reaches the disk boundary).
Others representations of H? exist, each having its own ad-
vantages: the Poincaré half-plane, the Klein model, the hy-
perboloid of revolution endowed with the Lorentz metric
(ds>=dx?+dy*—dz?) [21,22]. An often used way to represent
H’ in real space is the so-called pseudosphere: it does not
need any projection, has a constant negative curvature, and is
of infinite extent. Its shape is defined by the surface of revo-
lution of a tractrix [22] around its asymptote and can be
roughly seen as a trumpet horn of infinite height. We have
however chosen the Poincaré disk model because it is well
suited for the visualization of particles and defects.

In 2D space, topological defects are pointlike. A micro-
scopic definition of the elementary defects, which are discli-
nations in a reference hexagonal crystal, is possible through
a Delaunay triangulation of the atomic configurations. The
procedure can be generalized to the hyperbolic plane, for
which it has been shown to be unique when the ensemble of
points formed by the atomic centers is dense enough [24], a
condition always satisfied in our system. From the Delaunay
construction, one can then determine the coordination num-
ber of each atom in the liquid. When ko0=0.2 and at low
temperature 7, most atoms are sixfold coordinated, which
corresponds to a local hexagonal arrangement, and defects
are located on atoms whose coordination number differs
from 6: for instance, a sevenfold coordinated atom corre-
sponds to a negative disclination of topological charge —7/3
whereas a fivefold one corresponds to a positive disclination
of charge m/3; disclinations of higher charges *¢gm/3 with
an integer ¢ =2 are very rare at low 7. For illustration, two
configurations at high T (above the ordering transition 7% in
flat space) and low T (significantly below T%) are shown in
Fig. 1. In this work, we only focus on defect structures at low
temperature, when the spatial extension of the local hexago-
nal order (which grows as T decreases) has saturated as a
result of curvature-induced frustration [18].

In 2D space, there are two important identities, the Euler-
Poincaré relation and the Gauss-Bonnet theorem [21,22].
The former only involves topology and for N points on a
compact surface that is triangulated via the Delaunay con-
struction, it reads

%](6—6)=x=—2(g—1), 2)

where c is the average coordination number of the points and
where we have used the definition of the Euler characteristic
of the surface in terms of the genus, y=—2(g—1). On the
other hand, for a surface 3, of total area A embedded in the
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FIG. 1. (Color online) Atomic configurations in the Poincaré
disk representation of H2. Two temperatures above and below the
ordering temperature 7°=0.75 in flat space are shown: (a) 7/T"
=24, (b) T/T*=0.52. From the Delaunay triangulation, atoms are
colored according to their coordination: black for 6 (hexagonal), red
for 7 (negative disclination of charge —/3), and blue for 5 (posi-
tive disclination of charge +7/3); other colors correspond to discli-
nations of higher charge magnitude. Here, k=0.05 and the octago-
nal periodic boundary condition (pbc) is used.

hyperbolic plane H? of curvature K=—«?, the Gauss-Bonnet
theorem states that

f d*x\g(x)K =2y, (3)
3

where g(x) is the determinant of the metric tensor at point x,
which in polar coordinates is simply equal to [sinh(xr)/ k]*.
The curvature being constant, Eq. (3) can be rewritten as

At =4m(g-1), (4)

which combined with Eq. (2) gives the deviation from 6 of
the average coordination number in terms of the density of
particles p=N/A and the curvature:

3 2
c—6="2 (5)
mp

One can apply Egs. (2) and (5) to the elementary cell of the
tiling of H? generated by the periodic boundary conditions
(this cell corresponds to the fundamental polygon defining
the periodic boundary condition, see Sec. II). Equation (2)
shows that, neglecting disclinations of charge magnitude
higher than 7r/3 [27], i.e., particles with coordination num-
ber c =4 and ¢ =38, the cell must contain an excess of exactly
12(g—1) negative sevenfold disclinations (the remaining
sevenfold disclinations exactly compensate the number of
fivefold disclinations). Thus, an excess of 12 such disclina-
tions is present for the octagonal cell (g=2) and of 24 for the
14-gonal cell (g=3). This is to be contrasted with the result
on a sphere where an excess of 12 positive fivefold disclina-
tions is required. In addition, Eq. (4) shows that the area of
the elementary cell depends on both the curvature and the
type of boundary condition (through the genus g). Note then
that the excess density of sevenfold disclinations is indepen-
dent of the specific fundamental polygon chosen for the pe-
riodic boundary condition and only depends on the curva-
ture. It is indeed equal to 12(g—1)k*/[4m(g—1)]=3K>/ .
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III. CONTINUUM THEORY OF DEFECTS
IN HYPERBOLIC GEOMETRY

In this section, we summarize the continuum theory de-
veloped in Refs. [3,6-9]. We more specifically apply it to
negatively curved manifolds, which is appropriate for our
atomic model on H? with periodic boundary conditions. The
formalism directly deals with defect degrees of freedom and
starts with the elementary ones, the disclinations, from which
all other topological defects can subsequently be built. Six-
coordinated particles are treated using continuum elastic
theory [3]. At low temperature, the elastic free energy of an
arbitrary disclination density on a 2D manifold 2 of constant
negative curvature —«” is given by [3,6,7]

Y !’_ !’_
F=7 f f d*x\g(x)d*yVg(y)
>J3

Na
1
X600+ 13| 60+ + 3 Eeess (©)
Xy i=1

where Y is the Young modulus of the hexagonal crystal in
flat space, 1/A? is the inverse Laplacian-squared operator,
and s(x) the disclination density, defined as

Ny
s(x) = 3\’,%2} q;0(x - x;), (7)

where ¢; € 7" (i.e., all integers except zero) is the reduced
topological charge of the ith disclination located at x; (in
practice at low T, we only need to consider ¢;= = 1) and N,
is the total number of disclinations in ¥; finally, E . is a
disclination core (free) energy, renormalized by thermal fluc-
tuations [3]. Note that in the present problem, Eq. (6) is the
free energy for the elementary cell of the tiling of H* asso-
ciated with the periodic boundary condition. Provided inter-
actions between cells are weak, the total free energy of the
whole system is just this quantity multiplied by the (macro-
scopic) number of cells. This is of course different from
spherical geometry where the whole system is finite. The
disclination density must therefore satisfy a “topological”
generalization of the electroneutrality constraint, namely,

f Pxg(x)(s(x) + &) =0, (8)
3

even at finite temperature. By using Eq. (7) and the Gauss-
Bonnet theorem, Eq. (4), the above expression leads to a sum
rule on the total topological charge, namely,

Ny

X gi=—12(g-1). 9)
i=1

Not surprisingly, one then obtains the same result as previ-
ously derived on the basis of the Euler-Poincaré relation:
there must be an excess of 12(g—1) disclinations with el-
ementary charge g=—1 (per elementary cell) at low 7.

The presence of the 12(g—1) localized irreducible defects
only imperfectly screens the curvature which is uniform
throughout space. The resulting elastic strain energy could
then potentially be reduced by introducing dislocations that
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represent tightly bound pairs of +1 and —1 disclinations. The
amplitude of the stress generated by one of the irreducible,
unpaired, —1 (i.e., sevenfold) disclinations is controlled by an
effective disclination charge at a geodesic distance r of the
disclination center. This quantity is given by

serlr) =T~ 2 f g ST
0 K
=— 757-[7 — 6 cosh(kr)] (10)

and vanishes at the critical radius r,=«"' cosh™(7/6)
=0.57k".

It was shown in Refs. [3,6] for spherical geometries that
there is a range of dimensionless curvatures «o for which the
strain energy associated with the stress field generated by the
irreducible disclinations is minimized by the presence of
strings of dislocations that radiate from each of the irreduc-
ible disclinations. This can easily be transposed to hyperbolic
geometry. These strings of dislocations, whose Burgers vec-
tor is perpendicular to the string axis, terminate in the crys-
talline background at a distance of the order of the critical
radius r,.. These structures have been dubbed “grain bound-
ary scars” [3,6,10]. The typical number of dislocations per
irreducible disclination can be estimated at zero temperature
by assuming that a scar contains m strings aligned along
geodesics emanating from the disclination center. It has then
been argued [3] that dislocations along a geodesic are
roughly separated by a distance €(r)=mo/|s.(r)|, so that
the number of dislocations per irreducible disclination is
given by

N,;= mf dre(r)™" = est
0

m a7 2 -1
= —cst+—| 7 cosh™| = | =13 |(ko)
3 6

= —cst+0.3998(ko) ", (11)

where cst denotes a constant coming from subdominant
terms which depend on microscopic details (such as the
Young modulus and the core energies). In contrast, the con-
tribution proportional to (xo)~! is universal for a given ge-
ometry and underlying type of crystalline order.

The above estimate does not take into account possible
interactions between grain boundary scars. In the same ap-
proximation, one can derive from Eq. (6) the (free) energy of
a boundary scar. Upon assuming that the strings radiating
from an irreducible disclination and forming a given scar do
not interact, the energy can be written as the sum of
dislocation-dislocation pair energies, which are always repul-
sive, and of a disclination-dislocation energy, which for a
dislocation in a geodesically aligned string at a distance r
from the disclination center is given by
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FIG. 2. (Color online) Sketch of a grain boundary scar with 2
arms of dislocations formed by 5-7 (blue-red) dipoles attached to a
central sevenfold (red) irreducible disclination. The glide motion
takes place along the Burgers vector as indicated by the arrow.

2
1 + cosh(kr)

sinh(Kr)ln{ —COSh(Kr) -1 }

FDd(r)=E(K0-)_l , (12)

where we have assumed that the magnitude of the Burgers
vector is given by o, the lattice spacing of the underlying
crystal. This expression can be obtained from that derived for
spherical crystals [9] by replacing R~! by ix. Fp,(r) is attrac-
tive up to a distance of order «~!. It is the competition be-
tween the energy gain coming from this attraction and the
energy cost due to the repulsion between dislocations and to
the dislocation core energies that results in stable grain
boundary scars, at least for sufficiently small dimensionless
curvature ko.

We now turn to the dynamics of the defects at low tem-
peratures. We focus on the structural relaxation time 7 at low
but finite 7. We again consider a situation in which there are
12(g—1) noninteracting grain boundary scars. A simple esti-
mate of the structural relaxation time is provided by the time
scale for the diffusion of the most loosely bound dislocation
in a scar to another scar. Climb motion being energetically
prohibitive, the motion of a dislocation proceeds via ther-
mally activated glide motion (i.e., parallel to the Burgers
vector). This takes place in a potential energy that combines
the Peierls potential due to the underlying lattice and the
interaction potential with both the central disclination and
the other dislocations of the scar [12]. The main contribution
to the activation energy barrier along the dislocation motion
is due to the disclination-dislocation interaction. The latter
increases as the distance between the outermost dislocation
and the central disclination increases along the glide direc-
tion (which, we recall, is perpendicular to the average direc-
tion of the string: see Fig. 2). A crude estimate for the barrier
is obtained from a harmonic approximation to Fp,; in Eq.
(12) for a transverse displacement of the dislocation. For
small curvature magnitude xo and after taking into account
that the outermost dislocation is originally at a distance ~ !
of the central disclination, this leads to

Fpa(k7',y) = Fpy(x7',0) ~ CYkay* + ---,  (13)

where C >0 is a constant of order unity and y is the distance
along the geodesic that is perpendicular to the string at the
position of the chosen dislocation (e.g., along the arrow in
Fig. 2). To relax the underlying translational order, the dis-
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location should move a distance of order k= (which corre-
sponds to the typical distance between grain boundary scars).
This involves an energy barrier whose order of magnitude
estimated from Eq. (13) is Yox™!. The final estimate for the
structural relaxation time is thus

1 E,+E -l
T~ zexp< o+ (o) ) (14)
DgK kBT

where D, is a “bare” glide diffusion constant (i.e., describing
small displacements of a free dislocation [12]), E; is the
energy barrier due to the Peierls potential and other subdomi-
nant terms, and E, « Y o> corresponds to the barrier estimated
above. These predictions will be compared with simulation
results below.

The above arguments have been directly adapted from the
theory of spherical crystals, with the necessary changes com-
ing from the negative curvature. However, there may be a
more serious difference between spherical and hyperbolic
geometries due to the fact that the atomic system is of finite
extent in the former and possibly of infinite extent in the
latter (with periodic boundary conditions, a proper thermo-
dynamic limit can be taken). As mentioned above, bona fide
thermodynamic phase transitions are possible in the hyper-
bolic plane H?, but not on the sphere. Strictly speaking,
freezing of the 12 irreducible fivefold disclinations on a
sphere in an icosahedral superlattice only occurs at zero tem-
perature. At finite temperature, provided of course that one
waits long enough for equilibrium to be achieved, the 12
defects can move distances of the order of the sphere radius
and the whole system continuously reorganizes. On H? on
the other hand, one can envisage a ’crystal of defects’ formed
by a periodic arrangement of the irreducible sevenfold dis-
clinations (with or without associated grain boundary scars)
on a {3,7} lattice. The latter lattice is the only one that is
compatible with a predominance of sixfold coordination
numbers. Indeed, in the hyperbolic plane, each possible lat-
tice possesses a uniquely determined lattice spacing (for a
given curvature), which is characteristic of its symmetry.
Thus, there exists only one possible lattice compatible with
the density of irreducible defects. Long range or quasilong
range order could then be achieved through a finite-
temperature phase transition, much like the formation of an
Abrikosov-like lattice of vortices in a uniformly frustrated
XY spin model in 2D flat space [4]. Checking this possibility
in simulations of our atomic liquid model is however very
hard for two reasons: the difficult equilibration of the system
at low temperature in the “glassy” liquid regime on one hand
and the constraint due to the periodic boundary condition on
the other. The latter constraint comes from the fact that the
elementary cell of the periodic boundary condition proce-
dure, with its 12(g—1) irreducible disclinations, should be
compatible with the {3,7} tiling of the hyperbolic plane with
vertices centered on the irreducible defects [28].

IV. SIMULATION RESULTS AND DISCUSSION

As already illustrated in Fig. 1, we find that as tempera-
ture is lowered, the number of defects decreases drastically
until one is left with an irreducible number of negative sev-
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FIG. 3. (Color online) Low-T atomic configurations showing the
defect structures on H?: (a) ko=0.2, T/T*=0.345, octagonal pbc;
(b) ko=0.1, T/T*=0.497, octagonal pbc; (¢) ko=0.1, T/T*
=(.520, 14-gonal pbc; (d) ko=0.05, T/T*=0.521, octagonal pbc.
The system is shown at constant atomic size o, which allows one to
better visualize the extension of the scars as a function of curvature.
Note also the difference between the two different pbc’s in (b) and
(c): 12 irreducible defects are present for the octagon and 24 for the
14-gon.

enfold disclinations and an excess of dislocations formed by
tightly bound pairs of fivefold and sevenfold disclinations.
We show additional low-T" atomic configurations in Fig. 3,
for several values of the curvature and different periodic
boundary conditions (octagonal cell with 12 irreducible
negative disclinations and 14-gonal cell with 24 such discli-
nations). Note that the scars centered on the excess disclina-
tions only become evident for small o.

To provide a more quantitative test of the theoretical pre-
diction, we have monitored as a function of temperature the
number of fivefold (i.e., g=+1) disclinations. Below a tem-
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FIG. 4. (Color online) Temperature dependence of the number
of fivefold disclinations divided by the number of irreducible sev-
enfold disclinations (i.e., 12(g—1)) for T<T*: ko=0.2, ko=0.1,
k0=0.05. For k0=0.1 and ko=0.2, both octagonal and 14-gonal
pbc’s are shown. The lines correspond to an exponential fit.

perature roughly equal to the ordering temperature 7 in flat
space [25], these disclinations are all paired with sevenfold
(i.e., g=—1) disclinations and, moreover, disclinations of
higher charge magnitude |¢| =2 have almost completely dis-
appeared. As seen in the plot shown in Fig. 4, the number of
5-7 dislocations decreases with decreasing temperature and
seems to saturate at a nonzero value, which we extract
through an exponential fit to the data. This saturation value,
divided by the number of irreducible sevenfold disclinations
in the cell [i.e., 12(g—1)], gives an estimate of the average
number N, of dislocations which are contained at 7=0 in a
grain boundary scar radiating from an irreducible disclina-
tion. This allows us to compare the values obtained for sev-
eral curvature magnitudes «o and periodic boundary condi-
tions with the theoretical prediction in Eq. (11), only one
adjustable parameter being needed for this exercise. The out-
come is displayed in Fig. 5 and shows compatibility between
the simulation data and the prediction. For the smallest cur-
vature parameter included, ko=0.05, we are only able to
provide an upper bound to N, as we cannot equilibrate the
liquid at low enough temperature with the available com-
puter resources. On the other hand, the results for the two
other curvatures are robust and the comparison between the
octagonal and 14-gonal periodic boundary conditions show
very little finite-size effects.

From Fig. 5, one can see that the structure in grain bound-
ary scars no longer remains stable above a threshold curva-
ture magnitude k.0 =0.2. This threshold value is nonuniver-
sal and depends on the type of interaction potential between
the particles. (In Ref. [10], a similar threshold value (a/R,)
=(.2 has been found in an experimental system of colloidal
particles on a sphere, but this may well be coincidental.) In
addition, we have checked that the typical length of the arms
emanating from an irreducible disclination is always of the
order of, but smaller than, the theoretical cutoff radius r,
=«"! cosh™!(7/6). Note that in the presently accessible tem-
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FIG. 5. (Color online) Extrapolated number N, of dislocations
per irreducible disclination as a function of (xo)~'. The straight line
is the theoretical prediction from Eq. (11) (up to an adjustable pa-
rameter which is the intercept with the x axis). The data for ko
=0.05 (octagonal pbc) is shown as an empty circle and only corre-
sponds to an upper bound, as the liquid cannot be equilibrated at
low enough T (see Fig. 4).

perature range, the system always remains in a liquid, i.e.,
disordered, phase, albeit very slowly relaxing and apparently
on the verge of glass formation. We have never been able to
observe crystallization of the lattice of defects discussed
above.

We have also investigated the low-7 dynamics of the sys-
tem by monitoring the “self intermediate scattering func-
tion,” Fs(k,t)=(1/N)E?il(P_1/2+,-(k/,<){cosh[de(t)}), where
d(t) is the displacement of the jth atom during an elapsed
time ¢, P_y;,u, 18 @ Legendre function of the first kind
(which generalizes the standard function describing the cor-
relation of density Fourier modes in 2D Euclidean space),
and the wave-vector k is chosen as usual close to 27/ o
[17,18]. From F(k,t), we have extracted the structural
(translational) relaxation time 7 [17,18], which can then be
studied as a function of temperature and curvature. One dif-
ficulty in trying to assess the validity of Eq. (14) is that the
prediction only applies at low enough temperature in a re-
gime dominated by irreducible grain boundary scars, when
most thermal defects have disappeared and growth of the
hexatic/hexagonal order has saturated. This occurs below a
crossover temperature Ty, which in principle may be
curvature-dependent. For the limited range over which we
have simulation data (mostly, xo0=0.1 and 0.2), Ty appears
to vary weakly with curvature and we replace Eq. (14) by the
following expression for 7'<Ty:

TgTXeXp([EO+El(KU)_I][éT_kngx])’ (15)

where 7y=7(Tyx) depends on curvature. The latter depen-
dence can be tentatively estimated by assuming that the re-
laxation at Ty is governed by the bare diffusion of disloca-
tions to a distance of order k!, i.e., szDglK_z.
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FIG. 6. (Color online) Scaled plot of the translational relaxation
time 7(«ko,T) in the low-T regime near and below an estimated
crossover temperature T/ 7" =0.5: ln[KZTDg]/[l +B(ko)™'] versus
T*/T, where B=0.1 and D, = 0.7602/ 7, are determined for provid-
ing the best collapse to a straight line. (7, is the microscopic time
scale associated with the interaction potential.) The plot is compat-
ible with Eq. (15).

In Fig. 6, we test Eq. (15) by plotting In(7D «?)/[1
+B(ko)™'] versus 1/T for T below a Ty estimated around
0.57" and with the constants B and D, adjusted to provide
the best straight line. Notwithstanding several adjustable pa-
rameters and a limited domain of available data, the depen-
dence of the structural relaxation is at least compatible with
the above prediction. However, a more extensive data set
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would clearly be necessary to provide a more rigorous test of
this finding.

V. CONCLUSION

In this article, we have studied the low-temperature struc-
ture and dynamics of a Lennard-Jones liquid model embed-
ded in manifolds of constant negative curvature and we have
compared computer simulation results with predictions of a
continuum theory of defects in curved space. In the regime
where the spatial extension of the local hexagonal order has
saturated due to the frustration effect, we find that the atomic
configurations consist of isolated defect structures formed by
an irreducible finite density of curvature-induced, negative
disclination from which emerge finite-length strings of dislo-
cations. Such “grain boundary scars” are unique to curved
geometries. The existence and the properties of these scars
are in agreement with the theoretical predictions, which so
far had only been confirmed for positively curved (spherical)
geometry. Questions remain open for future work, such as an
improved description of the long-time relaxation associated
with large-distance diffusion of the defects and the possible
occurrence of crystals of defects and scars.
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